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Abstract. In theories like SM or MSSM with a complex gauge group structure the complete set of Feynman diagrams
contributing to a particular physics process can be split into exact gauge invariant subsets. Arguments and examples given
in this paper  demonstrates  that in many cases computations and analysis of the gauge invariant subsets are important.

The increase of collider energies requires computa-
tions of processes with more particles in the final state and
with better precision (NLO, NNLO etc). At LEP1 the ba-
sic processes were 2 fermions (γ) production; LEP2 deals
basically with 4 fermion (γ) processes; Tevatron, LHC
and LC in many cases need in an analysis of the processes
with 5,6,8 and so on fermions in the final state, for exam-
ple, top pair production with decays - 6 fermions; sin-
gle top production in W-gluon fusion mode - 5 fermions;
strongly interacting Higgs sector in hadronic collisions-
pp → qq̄W +W− - 6 fermions; study of Yukawa coupling
in pp(e +e − ) → tt̄H - 8 fermions etc. Typically for the
processes with multi -particle final states  number of con-
tributing diagrams is large. For hadronic collisions not
only  number of diagrams but also  number of partonic
subprocesses is very large.

One of the problem in process computations is a gauge
cancellation among many  diagrams.   Any method of
calculation should preserve gauge invariance which is
rather complicated in theories like SM with  not a simple
gauge group. The well known statement from the quan-
tum theory of gauge fields is that the whole set of Feyn-
man diagrams contributing to any physics process is ex-
actly gauge invariant. However, in practical calculations
it remains amazing how gauge cancellations take place.
But in general the complete set of Feynman diagrams
contributing to a particular physics process can be split in
to exact gauge invariant subsets, and the gauge cancella-
tions occur in each of the subset. It will be demonstrated
that in many cases the idea to split the complete set of
diagrams on exact gauge invariant subsets (1) could be
useful in practice:

• any physics approximation should be based on
gauge invariant classes of diagrams

• better precision of computations in many cases

• better understanding of physics parameters like run-
ning couplings or scales (QCD scale, ISR scale etc).
Often different part of the same process need  dif-
ferent values because different kinematical regions
might be important

• any MC generator needs  well behaved and com-
pact matrix elements and the gauge invariance gives
that

For simple cases it is very easy to find gauge invariant
subclasses of diagrams. Take, for instance, the Bhabha-
scattering. In that case the two s-channel and two t-
channel SM diagrams are separately gauge invariant as
immediately follows if one substitutes the final e+e− pair
by the µ+µ− pair. In fact, it gives the simplest example of
so called "Flavor Flip" introduced in (1). There are two
kinds of flips: Gauge and Flavor, which correspond to
permutations the 2 → 2 subdiagrams with on- and/or off-
shell legs (see the exact definitions of flips in (1)). For
a concrete physical process one can get one Feynman di-
agram from another by a sequence of gauge and flavor
flips. In correspondence to all the diagrams for the pro-
cess one may put some graph called Forest. The Forest
is a graph with each vertex representing a diagram and
the edges given by the flips (gauge and/or flavor) of four-
point sub-diagrams. The Gauge Forest is such a Forest
or part of the Forest in which the points connected by
the only gauge flips. The connected components of the
Gauge Forest are called Groves. The general theorem has
been proved in (1) by the mathematical induction method:

The Forest F(E) for an external state E consisting
of gauge and matter fields is connected if the fields in
E carry no conserved quantum numbers other than the
gauge charges. The Groves are the minimal gauge invari-
ant classes of Feynman diagrams.

A very simple forest as an example is shown in Fig. 1
for the process ud̄ → cs̄γ. All diagrams are connected
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FIGURE 1. The Forest for the process ud̄ → cs̄γ is the Grove.

by the gauge flips passing through the middle diagram
3. Therefore all of them form one Grove - one gauge
invariant set of diagrams.

More complex examples of the Forests and Groves
are shown in (1). They have been obtained by means
of the program bocages (2) in which the algorithm
of tree diagrams generation based on the flips has
been realised. Table shows how the number of dia-
grams for various processes with 6 external fermions
splits into minimal gauge invariant subsets (Groves).

E ∑ classes

u ̄uu ̄uu ̄u 144 18 ·8
u ̄uu ̄uu ̄uγ 1008 18 ·24 + 36 ·16
u ̄uu ̄ud d̄ 92 4 ·11 + 6 ·8
u ̄uu ̄ud d̄γ 716 4 ·95 + 6 ·24 +12 ·16
� + �−u ̄ud d̄ 35 1 ·11 + 3 ·8
� + �−u ̄ud d̄γ 262 1 ·94 + 3 ·24 +6 ·16
�−νd ̄ud d̄ 20 2 ·10
�−νd ̄ud d̄γ 152 2 ·76
� + �−�−νd ̄u 20 2 ·10
� + �−�−νd ̄uγ 150 2 ·75
�−ν� + ν̄d d̄ 19 1 ·9 + 2 ·4 + 1 ·2
�−ν� + ν̄d d̄γ 107 1 ·59 + 2 ·12 +2 ·8 +2 ·4
�− ̄ν�  +ν� + �− 56 4 ·9 + 4 ·4 + 2 ·2
�− ̄ν�  +ν� + �−γ 328 4 ·58 + 4 ·12 +4 ·8 +4 ·4
�  +ν�− ̄ννν̄ 36 4 ·6 + 6 ·2
� +ν�− ̄ννν̄γ 132 4 ·26 + 2 ·6 +4 ·4
νν̄νν̄νν̄ 36 18 ·2

The familiar LEP2 gauge invariant classes ( CC09,
CC10, CC11, etc.) appear here automatically. However

now we know that these classes are not only gauge
invariant but they are minimal classes.

Let us take as an example the CC20 process (so
called "single W") e +e − → e −νd ̄u which splits to t- and
s-channel CC10 gauge invariant subclasses. By means of
the CompHEP (3) one can compute the contributions of
the classes and their interference as shown in the Table
below (4) (quark phase space cuts: Eq ≥ 3 GeV, Mud ≥
5 GeV and the lepton phase space cut: cosθe ≥ 0.997).
√

s σ(CC10− t) σ(CC10− s) σ(t − sinter f .)

quark phase space cuts, no ISR

190 147(0) 680(1) 5(0)
350 635(1) 420(1) 21(0)
500 1127(2) 270(0) 19(0)
800 1981(4) 143(0) 16(0)

lepton and quark phase space cuts, no ISR

190 116(0) 2(0) 0.0(0)
350 513(1) 7(0) 0.2(0)
500 928(2) 10(0) 0.3(0)
800 1671(4) 15(0) 0.4(0)

The CC10 t-channel part contains the single W boson
production.  It grows  with the collision energy and it
starts to dominate the CC10 s-channel part (W boson
pair production) at about 320 GeV.   One  should stress a 
few points here

• a good precision of computations is obtained only
if one splits the complete CC20 set of diagrams to
CC10 subsets because in that case one can use dif-
ferent kinematical variables of integration for differ-
ent subsets with different mapping of singularities
(the interference contribution is small)

• the "overall" scheme of the W-boson width treat-
ment could be used only for separate classes, oth-
erwise there will be an artificial suppression of the
CC10 t-channel part by the factor related to the sec-
ond W pole

• for the CC10 s-channel part obviously a  scale of
the order of energy should be used for the electro-
magnetic α and ISR while the CC10 t-channel part
has a very small characteristic virtuality of the soft
virtual photon,  and therefore a typical scale for the
corresponding α and ISR should be taken much
smaller, of the order electron momentum transfer
(4, 5)

The same general statements are also true for the
process of so called "single Z" production e+e− →
e+e−νν̄. In this case there are 56 Feynman diagrams
which split to 10 gauge invariant classes or 10 Groves
56D = 4 ∗ 9D + 4 ∗ 4D + 2 ∗ 2D (6). Two classes of



4 diagrams each contribute to the single Z as given in
the second column of the Table below. In the Table
the contributions of the gauge invariant subsets in fb are
given at the energy

√
s =200 GeV. First row - with an-

gular cuts, second row - no angular cuts for e−, e+.
The following angular and lepton energy cuts are used:
cosθe− ≥ 0.997 and cosθe+ ≤ 0.997 and El ≥ 15 GeV.

18W 8Z 9W +W− 4ZZ

θe,El 36.1 16.4 0.91 0.02

only El 106.6 153.6 240.5 44.9

If the energy and angular cuts are applied still there
are significant contributions from both single W (first col-
umn) and Z (second column) productions. One should be
careful in interpretation of experimental measurements in
this channel. (Contributions of other gauge invariant sub-
sets are very small and we do not show them here).

One more example of applications of the gauge classes
is related to the method of simplification of flavour com-
binatorics in the evaluation of hadronic processes (7).
Here a serious computational problem is the large number
of partonic subprocesses due to a presence of many quark
partons with different flavors in the colliding hadrons and
contributions of many additional diagrams for each sub-
process because of the CKM quark mixing. However in
the approximation when CKM matrix is reduced to the
CK matrix without a mixing with the 3d quark genera-
tion

VCKM =⇒
(

V 0
0 1

)
, V =

(
cosϑc sinϑc

−sinϑc cosϑc

)

where ϑc is the Cabbibo angle and neglecting masses of
the quarks from the first two generations Mu = Md =
Ms = Mc = 0 the problem can be simplified drastically.
In this case diagrams contributing to the process can
be split into the gauge invariant classes with different
topologies of the incoming and outgoing quark lines.
Then one can make a rotation of down quarks in all ver-
tices of Feynman diagrams thus, transporting the mixing
matrix elements from the diagrams to the parton distri-
bution functions . As a result a number of rules for a
convolution with quark distribution functions appear de-
pending on the topology of the gauge invariant class (see
details in (7); the method has been realized in the Com-
pHEP version for hadron collisions V41.10).

In this talk we have discussed the method which allows
splitting the complete set of Feynman diagrams contributing
to a physics process into gauge invariant subclasses. Well
known gauge invariant classes of diagrams like CC10,
CC11, CC09 etc naturally appear in such an approach.
It was demonstrated the above classes are the minimal
invariant classes ("Groves"). For a concrete physical pro-
cess one creates the graph - "Forest" in which vertices
represent diagrams and edges show the connection be-

tween diagrams by possible flips, flavor and gauge. The
vertices of the graph (diagrams) connected by the only
gauge flips form connected subgraphs, "Groves", and the
corresponding diagrams form minimal gauge invariant
classes. The flavor flips connect diagrams from different
gauge invariant classes.

Separation into gauge invariant classes in some cases
allows to better understand  properties of processes, to get
better precision of calculations, to make in tree level com-
putations a natural choice of characteristic scales for ISR,
structure functions, running couplings etc. it also makes
possible reasonable approximations,  and leads to a simp-
fication of  flavor combinatorics etc.

In some cases for processes with multi-particle final
states the number of gauge invariant classes is much
smaller than the number of physical reactions (8). So one
can compute, in principle, amplitudes for gauge invari-
ant subclasses of diagrams and then compute processes
by taking different combinations of that amplitudes for
classes.

The analysis was done for the tree level Feynman dia-
grams. A consideration at loop level is in progress (9).
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